

Andy Prince
MSFC/Engineering Cost Office

March 3, 2000

Overview

- Objective: Deliver a capability to perform cost and economic analyses of Spaceliner 100 concept vehicles to support 3rd Generation technology development decisions
- Approach: A combination of existing cost models integrated with new and improved tools (air-breathing propulsion and operations cost analysis)
- Product: Prototype Integrated Spaceliner 100 Cost Model
- Spaceliner 100 Cost Model Team
 - MSFC Space Transportation Directorate
 - MSFC Engineering Cost Office
 - LaRC Vehicle Analysis Branch (VAB)
 - GRC Propulsion Systems Analysis Office
 - SAIC
 - Rocketdyne (Under Subcontract to SAIC)
 - Old Dominion University

Approach

Spaceliner 100 Cost Component	Estimating/Analysis Capability
Non-Propulsion Subsystems	NAFCOM
Rocket Propulsion	Update of Rocketdyne Parametric Rocket Engine Cost Model
Air-Breathing Propulsion	NAFCOM Complexity Factor Generator (Notional)
Operations Cost	Modified Launch Systems Operations Cost Model (LSOCM)
Economic Analysis	ECO Business Analysis Model (Revised)

Participants and Responsibilities

Jim Turner Spaceliner 100

Customer

Joe Hamaker/MSFC
Doug Morris/LaRC
Brijendra Singh/GRC

Steering Committee

Eric Shaw ECO

Economic Analysis Capability

Andy Prince ECO

Task Lead

Keith Smith SAIC

NAFCOM
Air-Breathing Propulsion
LSOCM
Integration

AeroJet
Pratt & Whitney
Rocketdyne

Air-Breathing Propulsion Data

Miles Nessman Rocketdyne

Parametric Rocket Engine Cost Model

Resit Unal Old Dominion University

Support to LSCOM

Schedule and Coordination

Schedule

- Near Term
 - Scope Problem and Design Approach
 - Identify and Begin Data Collection
- By February 29
 - Procurement Activities Completed
 - Development Approach Finalized
- Early March
 - "Kick-Off" Meeting at MSFC
- June
 - Completion of Updated Parametric Rocket Engine Cost Model
 - Completion of Prototype LSOCM
- August
 - Delivery of Prototype Version 1.0 Cost Model

Coordination

- Weekly Management Team Telecons
 - MSFC ECO
 - SAIC (Huntsville)
 - Rocketdyne
- Weekly LSOCM Telecons
 - MSFC ECO
 - SAIC (Tampa)
 - LaRC
 - ODU
- Monthly Steering Committee Telecons (Including Jim Turner)
- Weekly Status Reports to Customer

Air-Breathing Propulsion Cost Modeling

Summary

- Life-Cycle Cost and Economic Analysis
 Capability Needed to Support 2nd and 3rd
 Generation Launch Vehicle Decisions
- Integrated Cost and Economic Analysis
 Tools needed to Support Integrated Design
 Environments
- Spaceliner 100 Cost Model is a Step Towards Fulfilling the RSTS Application Cost Model Requirements